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ABSTRACT
In this paper we study conditions -that ensure existence and uniqueness
of solution to the initial value problem for the nonlinear Schrodinger
equation. Many known results in the one dimensional space are extended to the

higher dimensional cases. We also establish bounds and investigate decay

properties for the solution.
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SIGNIFICANCE AND EXPLANATION
The initial value problem for the nonlinear Schrddinger equation has
important applications in physics and engineering. 1In this paper we study
sufficient conditions for this problem to have a unique solution., We further

establish bounds for the solution and also investigate its decay properties.
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ON THE INITIAL VALUE PROBLEM FOR A NONLINEAR SCHRODINGER EQUATION

* *
Guang~Chang Dong and Shujie Li *

1. Introduction

Consider the following initial value problem for the nonlinear Schr&dinger

equation
iut+Au=F(u) ' (M
ul g = ¢(x) (2)
n 32
where x = (x1,x2,...,xn), A= z ) and F(u) is a complex-valued function of
j=1 ij

two real variables Reu, Imu.

For the case n =1 and u ¢ R, it is shown in [1] that if for sufficiently
small u and tor p > 4, the function F satisfies the condition
F(u) = o(|ul®) (3)
and if ¢ and its derivatives up to some order are also sufficiently small then
the problem has a unigue solution. Furthermore, the solution u is as smooth as

2

(- -]
¢ and F allow and is bounded in the L and L norms. More specifically,

we have
_14
fa(e) il € K(1 + t) (4)
where K 1is a constant.
It is also shown by Klainerman [2] that if F satisfies (3) with
p > 2 + /3, a solution to Equations (1) and (2) still exists and is unique.

But, in this case the order of (1 + t) in (4) is a small negative number.
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In this paper we show that the same results established in [1,2] are still

true when the number p in (3) satisfies p > (3 + ¥17)/2, Furthermore, we show

that if
1 1 /3 3 1 n+ 2
DA A R AR Y (5)

the above results hold also for the higher dimensional cases (n = 2,3,...).
We note here that the problem has been widely studied for the special case
that
F(u) = £(|u|)u (6)
where f is a real-valued function, [see, for example, 3, 4]. Condition (5) is
used in [4] to ensure a decay property for the solution.

In the sequel we use N°Hp to denote Lp-norm and use K4,Ky,.0., to denote

positive constants.




2. Results

Theorem 1. Suppose that p satisfies (5), F(u) ¢ c! satisfies (3) and

F'(u) = o(JulP™) . (7)
If there exists an n > 0 sufficiently small such that for g < k < % + 1,

ot nnk¢u2 <n< (8)

then (1) and (2) has a unique weak solution u(x,t) ¢ C(LZ(R),R*) satisfying (2)

and for each v with

2 2, n +
v,vt,va € C(L'(R),R) , (9)
the solution u satisfies
s=t . ° t
itu(s),visNI. -~ + [ (uls),iv_ + Av)ds = [ (F(u),v(s))ds . (10)
=0 % s 0

Moreover, there exist positive constants K;,K3,K3 and K, such that

e IR YN R ATV T3 T TR g1 PRI

Ilu(t)ll2 < K1 ' (11)
_ n{p-1)
2(p+1)
uu(t)np+1 < K2(1 + t) . (12)
for n =1
*
nint}, 22
llu(t)ll°° < K3(1 + t) ’ (13)
_nlp-1)
for n 2 2, 0 ¢ e <1 2(p + 1)
*
- _pn_
€ min(1,n(n+2_2E 1))
Ta(t)ll CK (1 + t) . (14)
2n 4
n-2+2¢

QWhen the two terms of the minimum expression are egqual, we must multiply by
the factor 1log(! + t) in the right hand side. We meet the similar situation
in the following formulas (32), (33), (61), and (62).




Proof: Find a solution w of

1wt + Aw = 0 (15)

with the initial condition

w(0) = ¢ . (16) ]

} Let u(®) =y, cConstruct a sequence of functions u(m), (m =0,1,2,.4.) *

in(m) + Au(m) = F(u(m-1))
t . (17)

u(m)(o) -0

(m)

If we can prove that ulm) converges, say u +u (m* «®, then u is a
solution of (1) and (2). Write V, W to denote u{®™ 1), u(M) _ & then (17) is
reduced to

1wt + AW = F(V)

. (18)
w(0) = 0

We proceed to derive some estimates for the sclution of (15), (16) and then

for the solution of (17). Then we will prove that u‘m) is convergent.

' When ¢ ¢ L'(R*) and D¢ ¢ L2(R"), we write the solution of (15), (16) in

the form
n
| _n I (e - yp?
; wix,t) = (amie) 2 [ exp(&l )ely)dy = R()$ . (19)
] S
r
‘ Hence
t W) ), = IR(E))D, = 191, , (20)
'y
.n
W(e) I, = IR(E)OI, € (ame) 2 1gn . (21)

By the Riesz-Thorin interpolation theorem [5) we have .




= ek e Ot e 8

'q—""'.(‘

n

(=]
3

n
il = Ire) el < (are)? 2 ugr <kt 2 (nen, + 1g1) (22)
q q - 5 1 2
a
1 1
vhere q » 2, =+ —-= 1.
g =
q
We also have
k k
ID_wi, = ID"¢1, . (23)
From (20), (22), (23) and elementary inequality
=2 2 =2 2
q a k q q
Hwﬂq < llwll°° Mwﬂz < (Kellwll2 + K7ﬂwaﬁ2) ﬂwﬂz ’
we have
k k
< i, + I + < [ +
|||w|||q't Ks( ¢1 4>||2 D ¢||2) 1<9(|¢>u1 ID ¢n2) (24)
where |11 1] denotes the norm
q,t
n_n
2
Mwiil = swp [(1+ & Cawr ]
Similarly, we have that
k+1
< + 5
”'walllq,t 1<10(|!D¢>||1 D ¢l!2) ‘ (25)
2 2 k+2
”'Dx"'”'q,t < K,,(ID7¢N, + WD o1,) - (26)

Now we estimate the solution of (18). The solution W can be written in the

form

t
wit) = [ R(t - s)F(V(s))ds . (27)
0

It follows from (3), (22), (27) that




-

n
t )

_ oy Pt p
nW(t)np+1 <Ky, g (t - 8) 1ves) | u1+ 1 as
¢ L _n
- _ p+1 2 P
K,, g (t - 8) (817, s
. _ n(p=1) _ np(p-1)
P _ 2(p*1) 2(pt1)
<K IVIT, . g (t - o) (1+ 8) ds
np{p - 1) n(p - 1)
Since Zp + 1) > 1 and 2(p + 1) < 1 by (5), hence we have
P
|IIWIIIP+1't < K14IIIVIIIP+1't . (28)
Multiplying (18) by 2W and integrating, we get
) t _ t
Wiy = 2Im [ ds [ WE(V)ax < 2 [ IW(s)I_ _IF(V(s))I ds
p+1 1
0 n 0 1+ -
R P
n{1-p)
<K, 111vI]1%8 ft (1+8) 2 as
15 pHi,t s .
Hence
P
|I|WI|I.‘,'t < 1<16IIIV|IIP_L1 . (29)

Similarly, we have

- = p-1 -
] IW(t+6¢) w(t)ll|p+1’t o(l1vitl YTV (e+e) V(t)lllp+1

ptl,t 't
p (30)
+ o(ﬁt)lllVl!lP+1’t ’
_ 2 2p~2 _ 2
| Iw(t+8¢t) W(t)'l'z,t o(IIIVI||p+1’t)IIIV(t+6) V‘t)l"p+1,t
(31)

2p
+ o(‘s':)IIIVII|p+1't .
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When n = 1, (27) implies that

SRR
M), < Ko [t - 8) TIF(V(s)1 ds
0

1 1 (p=2) (p*1)

t T2 p-1 p-1
< Ko £ (£ = s) “W(s)ly W), ds
_1_ (2-2)(E+1) ¢ 21 1- B
-1 2 2
Koo HIVITIE L 111V ot i [ (e -8 "1+ “as
G
(32)
- 1 -
I mmmn e
Ryo/IVINS L NIvin P00 v :
When n » 2 and 0 < e < 1 - g%ﬁ—%—}%, it also follows from (27) that
t
W) | <k, [ (t=5) MEwis) N ds
2n 21 0 2n
n-2+2¢ n+2-2¢
t (2042 —B) 2 Rl_pn__ _y)
oy &= ) n+2-2¢ p~1'n+2~2¢
<K, g (t=s)" IV(s)H, HV(s)Hp+1 ds
_]_(2 2___2!‘)___ zgﬂ_ﬂ____ty)
p~1 n+2-2¢ p-1'n+2-2¢
X vy Hivee 50
t (=22 -1)
. f (t-5) (1+5) n+2~2¢ 3
0
p n+2-2¢ p~1'n+2-2¢
Lo 11V 111 v 5
(ton(225 -1)) >
e=min{1,n -1
. (1+8) n+2-2¢ .
Changing V and W to their original notation u{™71), (™} _ o in (28)
respectively, we have
(m) _ (m=~1) p
™ =it crg ™ e o (34)
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Hence it follows that

(m) (m=1) P
< + . 5
[11u |'|p+1,t '||w||lp+1,t Kl I"p+1,t (35)
1f 1wl is so small that the following inequality holds
pt1,t
p~1 h C
K14(2lllwlllp+1't) <5 (36)
then we prove by induction that .
1
W™, € 2= 0 =02, . (37)
2 ’

The inequality (37) is true for m = 0 because u{0) = w. Assume that (37) is

true for m, by (35), (36), (37) we have

(m+1) 1 (m) 1
e € Ty o+ g TRy < (2 - )iy
Hence (37) is true for m = 0,1,2,... . Therefore we have
(m)
ll'u '”p+1,t‘2|llw”|p+1,t' (n=20,1,2,¢0.) & (38)
Then
a_r
(m+1)_ (m) _ 2 p+1? _ (m), {m=1)
I11u w g = ::g{(1+t) ng R(t-s) [F(u  )-F(u Mast_, ]
n__n_ . o _n
< Ky sup{(1+t)2 ! f (t-s)p+1 2 H(u(m) - u(m_1))F'(w + eu(m)
t»0 0
+ (1-0)0a™ 1y , ds, (0 <6< 1)

1+ =

P

p-1 (m) _  (m=1)
<Ky LWl HETD ™ = alm= gy (39)

Let |||w|||p*1 ¢ be sufficiently small such that
p-1

K26|||w|l|p+1,t <1. (40)

From (24) we see that both (36) and (40) can be satisfied if 141, unk¢u2 are

small. Then from (39) we have that u(m) is convergent in the norm

I11ett ' u(m) + u (m + =), Therefore (12), (11), (13), (14) follow from

p+l,t

(38), (29), (32), (33) and (24).




In (30) and (31), letting m + @, we then have that

~1
+1,t

- - (ye _ p _
H ) (u-w) (£+8¢) (u w)(t)lllp+1 = 0(||lulllp Y u(e+dt) “(t""p+1,

t

't

+ o((6t) |1 ]ullIP ,
pri,t (41)

_ - _ - 2p-2 _ 2
o) (e88) = (om0, = oCHTal TR ) utesse) - weed 1112

+ o (56)%)111ul112P

.: ptt,t ° (42)
? And we have
{
i
t+6t t+8t
wit + 8t) - w(t) = | w (s)ds = -i [ Aw(s)ds .
t t
‘ Combining the above equation with (26) we have
I1lw(t + §¢) - w(t)lllq = 0(4¢t), (q »2) . (43)
\ It follows from (41), (42) and (43) that ||lu(t + 8t) - u(t)lllp+1 e = o(st),
_ 1 ’
Hlute + 68) - u(o)]]), = o((5e) 2).
If v satisfies (9), then
! T
) 1™ S04 [ @™, + avae = ™) 0 (44)

0

Equation (10) follows from (44) by letting m * o,

Ld

}
x; Consider now the uniqueness of the weak solution. Let u, u + U be two
:} solutions C(Lz(Rn),R+) satisfying (2), (10). We have
¥ 0 5
) Ulyg=20" (45)
I
h x r
- 1(U(T),v(T)) + [ (U,iv, + Av)de = [ (F(u + U) - F(u),v)at . (46)
) 0 0
\
1
-9~
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Taking v = U in (46) (see appendix) and then taking the imaginary part, we

have
1 T
F00T? = Im [ (F(u + 1) - F(u),U)dx
0
T 2 T 2
< max IE*(u + 60)| [ WU(e)1%ae = ko [ Iu(e)tTae . .
0¢<6<1,u,U 0 0

Hence U(t) =0 .

Thus, the proof of Theorem 1 is completed.

Theorem 2 (decay property). Let u(x,t) be the weak solution of Theorem
1. There is a unique solution u, of the linearized egquation corresponding to

(1)' i.e. (15)’ such that

fu(x,t) - u+(x,t)!l2 + 0. (47)
as t > +» ,
Proof: We define
]
u, = u(t) + [ R(t-s)F(u(s))ds . (48)
t
We wish to prove that the above integral is absolutely convergent in | Hz.

When n =1, by (12), (13) we have

5 2p pt1 -1 - 251 -(p—1)min(%.2§3)
HF(u(s))"2 < K28"|U(S)| 'H1 < 1(29I|u(s)llp+1llu(s)ll°° < K3OS
(49)

When p > 3, we have p-1 > 2 and when p < 3, we have ( -1;( =2) >4 by (5),

hence in both cases we have :

IF(a(sN), =o(s™ M (n>0) (50)
When n 2» 2, by (12), (14) we have
F(u(s)) 12 < k.t lu(s)?Ph, < k.. tu(s)1® (s 2P < x. gP (51)
2 28 1 31 p+1 2n 32 >
n=-2+2¢
where )
1 n-2+2¢
= n 2p(1~e) = n(p=-1)
o = - (52)
1 _ n-2+2e 1 - ¢ - np=1)
p+1 2n 2(p+1)
-10=-
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o

= _nlp=1) -a) [~ i —pn_ .
8 2(pt1) + (2p-a)[-e + m1n(1,n(n+2_2€ 1M . (53)

PN _yy5 4 .
When n(n+2_28 1) or equivalently,

p>(1+ %)(1 + Eizi) , (54)

it follows from (5) that

- ey - e nlp=1). _ ey - ey
8 = 2p(1-¢) a[152(p+1)] 2p(1-¢) (2p(1-€) - n(p~-1)]

(55)
= n(p=-1) > 2(1 + 1 )y > 2
P
when
p < (1 + %)(1 N zizi ) (56)
we have
n2+4 2 2
(2(p+1) (1-€)-n(p=1)1 (B-2) = np(p~1) — + n'=2n-4-(n"-2n+4)p + O(e)
(57)
2 3 2 2
_ v n +4  n -2n 1 2-2¢, _ (n=-2)
= [np(p=1)=2(p+1)] o= + ——=— [(1 + ) [1 + =) = p] + —=—+ 0(e) .

The right hand side of (57) is positive when € is small. Using (5), (56) for

n 2?2, we see that £ > 2 . Combining this with (55), (51), we have (50) for

the case n » 2.

Therefore

hu, (8) - ule)l, < [T AF(u(s))i,ds > 0 (t > @)
t
i.e. (47) is satisfied.

The solution of (1), (2) can be written in the form

u(t) = R(t)$ + [“R(t-s)F(u(s))ds .
0
Therefore, we have
u, (t) = R(t)$ + [ R(t-s)F(u(s))ds . (58)
0

The right hand side of (5R) is a solution of (15).

Theorem 2 is thus proved.

-11-
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We now study the regularity of the solution of (1), (2). The result is given
in the following theorem.
Theorem 3. Suppose that F(j)(u) = o(|ulP"3) for each nonnegative integer

3 € p. Then we have that

XX

(i) If n=1, ¢ exists or if n=2, p >3, Di¢ exists or if

6
n=3, p?>»4, Dx¢ exists, then the weak solution of Theorem 1 is a classical
solution.

(ii) If n=2,3 or if n=4,5 and p » 2 , then Diu ¢oUy €

2n

n-2+2¢
Lz(Rn) n Lt 2 s(Rn) for every t » 0, and u satisfies (1) almost

2
everywhere, and Dxu ¢ U, satisfy inequality (11)-(14) for some constants Xg,

Ky, K3 and K4 . 2n

s
Ln 2+2¢ n

(iii) If Dyu e L2(RM) 0 (R") for every t > 0 , then

1(u(s),v(s))|::§ + [Pltuls),iv_(s)) - (grad u, grad v)1ds = [E(F(uls),vis))ds ;
0 0

2 +
for every v with v, Vs va € C(Lz(Rn),R ). Moreover Dou satifies
inequality (11)-(14) for some constants K1,K2,K3 and Ky -
! Proof: Differentiating (18) and estimating by the same method as in (28), (29),

(32), (33), we have

p-1
< 59
. THD WY gy € Kag L HIVITIG g (IHIDVINE g o (59)
:
! 1
< 1=
o ®ilT, o < Xy VI (60)

DV
SUIRTILI LTI

-12-
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1 1 oo ] 1 {p=2)(p*1)
P p p-1 p p-1
x35[IIIVHII2'tIIIDXVIIlz't] [IIIVIIIpﬂ LD VIIIp+1 t]
c (1 + t) (n=1) (61)
p-1 1 1 pn
— =  —=(2p+2~ ——x)
P p p-1 n+2-2¢
Hip Wil o <R [HIVITE o vIT1g (]
n-2+2¢
1 1 L - e-min(1,n(-22— - 1))
s (Vi 2 o vin®, 1P e Ly n+2-2¢
p+i,t p+i,t
(n » 2)
(62)
Illnxanlwh [HIVIIIP,\1 tHIDMVIII IIIVIIIP+1 eI11D, VIllp‘\1 t]
(n>1, p»2).
(63)

And we have three additional similar inequalities.

When p > 2, |l|w||lp+1't is small enough and |||D ""lp+1,t'

IIIID,(vl|||l>_'_1't exist, from (59), (63) we deduce that Dxu(M), Diu(M) are

uniformly bounded in the norm lp*1. Since they are weak convergent, by the

Banach~-Saks theorem, Dxu, Diu exist for all t , or u ¢ Wp+1(Rn) for all

t »0, and

_ n(p~1) _ n{p-1)
2(p+1) 2 2(p*1)
D ul L € Kyg(1+t) LIV SIS .

i.e. D u, Diu satisfy inequality of type (12). It is alsc easy to deduce that

they also satisfy ineaqualities of the type (11), (13), (14). Hence (ii) is

proved.

By the same process and with the help of the Sobolev imbedding theorem, (i)

and (iii) can also be proved straightforward.

-13-
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APPENDIX

We cannot take v = U in (45) directly because U is not smooth. However,

we can proceed as follows.

Let j(x) be a mollifier, i.e. satisfying the followinag conditions:

o n
(1) j(x) e ¢, (xeR); (1) [ dxax =1
R -

(131)  §(x) = {x,\) = j(f) =0 (Ix] »X) ;
1

(iv) j{x) is an even Ffunction of x ; (v) jlx) = O(A-n),Dj(x) = O(X“n_ ).

Similary let k(t) be a mollifier also, with (iii) changes to k(t) = k(%) =0

(Jt} > y). Define U(x,t) =0 (t < 0) , then because of U{x,0) = 0, we have

U(x,t) ¢ C(L2(R"),R)).

Take v(x,t) = f U(y,T))j(x~y)k({t-T)dydTr 4in (46), and then take imaginal

part, let A, u » 0 , we have (denote Rel = Uy, Im U = U,)

o)t + 1im 1, + 1im I, = Im [T(F(wU) = F(w),U)at
1 2
A+0 u+0 0

where

fn A, 3x=y) [0, (¥, )V, (x,8) = U (x,£)U, (y,+))dxdy = 0

(because of the integrand is an odd function of x,v)

x [Tat ft*“tu1(x,t)u1(x,r) + U, (x, )0, (x,T) Ik (t~T)dr

1, =/ a
2 R0 tey

=/ ax(fT ar [TMar + [Yae fodr)(U1(x.t)U1(x.T) +
R T~u T 0 -t

+ Uz(x,t)Uz(x,T)]kt(t-T)

(because of the integrand is an odd function of t,71)

I +
wer? [T ae [T (a4 ot)  max tuen® = - Fwen? + ot1) .
Te-u T 0<e<T+y

Hence we have

2 aum? = m [Tir(ern) - Fw),v)ax .
0

14~
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